xˆ z ˆ. A second vector is given by B 2xˆ yˆ 2z ˆ.

Size: px
Start display at page:

Download "xˆ z ˆ. A second vector is given by B 2xˆ yˆ 2z ˆ."

Transcription

1 Directions for all homework submissions Submit your work on plain-white or engineering paper (not lined notebook paper). Write each problem statement above each solution. Report answers using decimals (3 significant figures, unless exact) and appropriate units. Do not leave fractions, radicals, transcendental numbers (such as, e), or place-holders for physical constants (such as 0, 0) in any answer. Use vector notation that is consistent with your textbook ( xˆ, yˆ, z ˆ ). Draw a box around each answer. Chapter 3 1. A first location is given by P(1, 1, 2). A second location is given by Q(2, 1, 0). Determine the unit vector that points from P to Q. 2. A first vector is given by P 2xˆ yˆ 2z ˆ. A second vector is given by Q 4 xˆ 3 yˆ 2 z ˆ. A third vector is given by R xˆ yˆ 2 z ˆ. Determine P Q R. 3. A first vector is given by A 2 xˆ z ˆ. A second vector is given by B 2xˆ yˆ 2z ˆ. A third vector is given by 2 ˆ 3ˆ ˆ C x y z. Determine A B C. 4. A first vector is given by F 3xˆ 4yˆ z ˆ. A second vector is given by G 2yˆ 5z ˆ. Determine the angle between F and G. Do not use cross product. 5. A first vector is given by J 2xˆ yˆ 3z ˆ. A second vector is given by K 3xˆ 2z ˆ. Determine a vector perpendicular to both J and K which has a magnitude of A first vector is given by A 3yˆ 4z ˆ. A second vector is given by B 4 xˆ 10 yˆ 5 z ˆ. Determine the vector component of A in the direction of B. 7. A vector field is 3 Rˆ 2 θˆ 6 ˆ. Determine the vector component of this field in the +z direction at the point (1, /3, 5 /4). Express the answer in the spherical system. 8. Point E is located at (3, /2, 1). Point F is located at (5, 3 /2, 5). Determine the straight-line distance from E to F.

2 9. A vector field is r cos rˆ sin ˆ. Determine the closed line integral of this field around the path shown in the figure. Do not use Stokes Theorem. 10. A vector field is r cos rˆ zsin. Determine the flux of this field outward from 0 z 1, r 4. Do not use the Divergence Theorem. 2 2 ˆ A scalar field is 10Rsin cos. Determine the magnitude of the gradient of this field at the point (5, 30, 45 ). 12. A vector field is given by r sin rˆ r z z cos zˆ. Are there any surfaces along which this field is solenoidal? If so, which one(s)? 2 ˆ 13. A vector field is given by RRˆ Rcos 2 ˆ. Point P is located at (4, 60, 30 ). Does this vector field circulate around point P? In which direction(s)? Chapter 4(a) 14. A point charge of 15.7 nc exists at (4 m, 0, 0). A line charge of nc/m exists along the y axis. In free space, determine the electric field intensity at (4 m, 0, 3 m). 15. A point charge q is located at point P(0, 4, 0), while a 10 nc charge is uniformly distributed along a semicircular ring as shown in the figure. Determine the value of q such that the electric field at the origin is zero. 16. A volume charge density is zero within R 1m. In the range 1 R 4 m, the charge 2 3 density is 10 R mc m. Outside this range, R 4m, the charge density is zero. Determine the net electric flux crossing through the surface R = 2 m. 17. A volume charge density in free space is 2R nc/m 3 for 0 R 10 m and zero otherwise. Determine the electric field intensity at R = 2 m.

3 18. An electric field intensity is 2xxˆ 6yy ˆ V m. Determine the potential difference from (0, 1 m, 0) to (1 m, 0, 0). 19. An electric field intensity is 2rsin rˆ rcos ˆ V m. Determine the amount of work required to move a charge of +20 C from 1m, 6, 5 m to 2 m, 2, 5 m. Chapter 4(b) A current density is 10zsin r ˆ ma m. Determine the current passing through a cylinder with a radius of 2 m, and with its top at z = 5 m and its bottom at z = 1 m. 21. It is necessary to construct a 1-M resistor from a cylinder that is 2 cm long with a radius of 4 mm. Determine the conductivity of the material throughout the cylinder. 22. A cylindrical wedge of carbon ( = 2.67 x 10 3 S/m) is depicted. Calculate the resistance between the curved faces at r = a and r = b if a = 40 mm, b = 80 mm, h = 62 mm, and 0 = The potential field V 2x yz y z (V) exists in a dielectric medium with a relative permittivity of 2. Calculate the total charge within the unit cube 0 x 3 m, 0 y 3 m, 0 z 3 m. 24. The cylindrical surface r = 10 m separates two homogeneous dielectric regions: region 1, r 10 m, r 1 2 and region 2, r 10 m, r 2 5. If the electric field intensity in region 1 is 10 rˆ 20 ˆ 40 zˆ kv m, determine the electric field intensity in region The boundary between two regions of space is defined by 8x 6z 48 m. The region including the origin is air, where the electric field intensity is 125 xˆ 75 yˆ 50 z ˆ V m. Determine the electric field intensity in the second region, where the dielectric constant is 2. The boundary is charge-free. 26. The upper plate of a parallel-plate capacitor (at z = 2 mm) is maintained at 10 V, and the lower plate (at z = 0 mm) is maintained at 0 V. Determine the potential everywhere between the plates as a function of distance from the lower plate to the upper plate (i.e. as a function of z) using Laplace s equation.

4 27. One semi-infinite conducting plane is located at 0 ; it is held at +50 V. Another conducting plane is located at 4 ; it is held at 50 V. There is a tiny gap between the planes along the z axis. The volume between the planes is occupied by free space. Determine the electric field intensity at 6 and a radius of 1 cm. 28. One infinite conducting plane is located at y = 2.00 cm. Another infinite conducting plane is located at y = cm. Between the planes, the charge density is y μc m. Both planes are charged to 30.0 kv. The material between the planes has a dielectric constant of 3. Determine the potential exactly halfway between the planes An electrostatic potential in free space is 2x 6y V. Determine the electrostatic energy stored in the region 1m x 1m, 1m y 1m, 1m z 1m. 30. Flat metal plates are attached at = 0 and = /2 to the curved bar in the figure. The conductivity of the material within the bar is 2.06 x 10 7 S/m. The dimensions of the bar are as follows: a = 5.0 cm, b = 7.0 cm, t = 1.5 cm. Determine the resistance of the bar, from one metal plate to the other. 31. An infinite line charge with a density of nc/m traces out x 16 m, y 3 m. It is located in free space. A grounded conductor occupies y 2m. Determine the electric field intensity at ( 8 m, 3 m, 7 m). Chapter A loop carries current as shown in the figure. Determine the magnetic field at point P for a = 4 cm, b = 5 cm, = /6, and I = 120 ma. Use the Biot-Savart Law. 33. A thin wire carries 3 A in the +x direction. The wire is 5 mm long. Its center is located at (0, 4 m, 3 m). Determine the magnetic field intensity at the origin. 34. An infinitely-long cylindrical conductor of radius a is placed along the z axis. The current density in the conductor is Jrz ˆ 0 (where J0 is a constant in A/m 3 ). Determine the magnetic field intensity everywhere.

5 35. An infinitely-long coaxial line centered on the z axis carries a current I in the +z direction, uniformly spread across its inner conductor of radius a. It carries a return current I uniformly spread across its outer conductor between radius b and radius b + t (where t is the thickness of the outer conductor). Let I = 9.05 A, a = 2 cm, b = 5 cm, and t = 2 cm. The coaxial line is non-magnetic. Determine the magnetic field intensity at (6 cm, 20, 8 cm). 36. A conducting loop bent into a triangle carries a current of 2 A and is located close to an infinitelylong, straight filament which carries a current of 5 A, as shown in the figure. The loop and filament are in free space. Determine the magnitude of the force on side 3 of the triangular loop due to the filament (only). 37. Three conductors comprise a three-phase transmission line, as shown in the figure. Triangle A-B-C is equilateral. At one point in time, A and B carry 75 A in the +z direction while conductor C carries a return current of 150 A in the z direction. Between the conductors is free space. Determine the force on a 1-m section of conductor C at that time. 38. A semicircular wire loop (in the x-y plane) carries a current of 4 A. The radius of the semicircle is a = 8 cm. The closed loop is 2 exposed to a flux density of 50 y ˆ mwb m. Determine the magnetic torque experienced by the loop. 39. A square loop of current, 2 m on each side, lies in the x-y plane and is centered on the origin. The loop carries 10 A of current, counter-clockwise around the z axis. Describe the motion of this loop if it is inside the magnetic field intensity 378 xˆ 557 z ˆ A m and it is free to move. Assume = The interface between two materials is y = 0. The magnetic field intensity in medium 1, y < 0, with permeability = 3 0, is 40 xˆ 120 yˆ 80 z ˆ ma m. Medium 2, y 0, has permeability = Assuming that no surface current exists at the boundary, calculate the angle between the magnetic field intensity in region 1 and the magnetic field intensity in region 2.

6 41. The boundary between two magnetic media is 12x + 5y = 0. Medium 1 contains all points for which x < 0 and y < 0. The magnetic field intensity in medium 1 is 1521 xˆ 2028 y ˆ A m. The permeability of medium 1 is 7 0. The permeability of medium 2 is Assume that there is no surface current along the boundary. Determine the magnetic field intensity in medium In a region for which = 20 0, the magnetic field intensity is x yz xˆ 10xy z yˆ 15xyz z ˆ A m. Calculate the magnetic energy stored inside 0 x 1m, 0 y 2 m, 1 z 2 m. 43. An infinitely-long thin wire is near a rectangular conducting loop. The rectangular loop has N turns and is parallel to the thin wire. This geometry is drawn, but only one turn is shown. Assume that the wire and the loop are in free space. For a = 51 mm, b = 108 mm, l = 400 mm, N = 5, determine the mutual inductance between the thin wire and the rectangular loop. Chapter A square coil of wire, with sides of 25 cm each, contains 100 turns. A small gap exists between the beginning of the first turn and the end of the last turn. The coil is centered on the origin. Each of the sides of the coil is parallel to the x or the y axis. The coil is 10cos x cos 10 3 t z ˆ Wb m 2. Determine the exposed to the magnetic flux density RMS value of the EMF induced across the gap. 45. A conducting bar slides along two conducting rails as shown in the figure. The magnetic flux density 2 is 0.5 z ˆ Wb m. The distance between the rails is 10 cm. The rod moves with a velocity of 8 x ˆ m s. The resistance is 20. Determine the power absorbed by the resistor. 46. A single-turn loop moves away from a filamentary current along the z axis, as shown in the figure. Assume I = I0t/T. The relevant quantities are I0 = 250 ma, T = 100 ns, a = 3 cm, b = 4 cm, d = 2 cm, = 0, R = 1 k. Determine the voltage induced across the resistor (according to the orientation for V given in the figure).

7 47. A parallel-plate capacitor has an area of 2.8 cm 2 and a gap of 0.2 mm. Air occupies the space between the plates. An AC voltage with a peak of +50 V at 20 MHz is connected across the plates. Determine the maximum value of the displacement current from one plate to the other. Do not use i = C dv/dt. As part of your solution, find E between the plates. 48. A sinusoidal voltage with an amplitude of 100 V is applied across a coaxial capacitor. The length of the capacitor is 6 cm. The insulator within the capacitor has a dielectric constant of 9. The inner radius of the capacitor is 0.5 cm. The outer radius is 1 cm. The frequency of operation is 60 Hz. Determine the RMS value of the displacement current. Chapter In free space, without any charge or current nearby, the magnetic field intensity is 1 cos t 3z ˆ A m. Write a complete expression for the corresponding electric field r intensity. 50. The electric field intensity of a propagating electromagnetic wave 6 25sin 2 10 t 6x z ˆ V m. Determine (a) the period of the wave, is (b) the wavelength, and (c) the wave s velocity (as a vector). 51. The electric field intensity of a plane wave propagating in a non-magnetic medium 8 754cos 10 t 5y z ˆ mv m. Determine the dielectric constant of the medium. is 52. The electric field intensity of a 1-MHz plane wave traveling in the +x direction in air points in the y direction. The peak value of the electric field intensity is 3.77 mv/m and occurs at t = 0, x = 50 m. Write a complete expression for the magnetic field intensity as a function of time and space.

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

Q1. A wave travelling along a string is described by

Q1. A wave travelling along a string is described by Coordinator: Saleem Rao Wednesday, May 24, 2017 Page: 1 Q1. A wave travelling along a string is described by y( x, t) = 0.00327 sin(72.1x 2.72t) In which all numerical constants are in SI units. Find the

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

PHYS102 Previous Exam Problems. Induction

PHYS102 Previous Exam Problems. Induction PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

Physics 1308 Exam 2 Summer 2015

Physics 1308 Exam 2 Summer 2015 Physics 1308 Exam 2 Summer 2015 E2-01 2. The direction of the magnetic field in a certain region of space is determined by firing a test charge into the region with its velocity in various directions in

More information

FIRSTRANKER. 3. (a) Explain scalar magnetic potentialand give its limitations. (b) Explain the importance of vector magnetic potential.

FIRSTRANKER. 3. (a) Explain scalar magnetic potentialand give its limitations. (b) Explain the importance of vector magnetic potential. Code No: A109210205 R09 Set No. 2 IIB.Tech I Semester Examinations,MAY 2011 ELECTRO MAGNETIC FIELDS Electrical And Electronics Engineering Time: 3 hours Max Marks: 75 Answer any FIVE Questions All Questions

More information

---------------------------------------------------------------------------------------------------------- PHYS 2326 University Physics II Class number ---------------------------------------------------------------------------------------------------------------------

More information

PHY 131 Review Session Fall 2015 PART 1:

PHY 131 Review Session Fall 2015 PART 1: PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being

More information

Physics 3211: Electromagnetic Theory (Tutorial)

Physics 3211: Electromagnetic Theory (Tutorial) Question 1 a) The capacitor shown in Figure 1 consists of two parallel dielectric layers and a voltage source, V. Derive an equation for capacitance. b) Find the capacitance for the configuration of Figure

More information

Unit-1 Electrostatics-1

Unit-1 Electrostatics-1 1. Describe about Co-ordinate Systems. Co-ordinate Systems Unit-1 Electrostatics-1 In order to describe the spatial variations of the quantities, we require using appropriate coordinate system. A point

More information

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2.

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2. PC1143 2011/2012 Exam Solutions Question 1 a) Assumption: shells are conductors. Notes: the system given is a capacitor. Make use of spherical symmetry. Energy density, =. in this case means electric field

More information

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK III SEMESTER EE 8391 ELECTROMAGNETIC THEORY Regulation 2017 Academic Year

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

2 Coulomb s Law and Electric Field 23.13, 23.17, 23.23, 23.25, 23.26, 23.27, 23.62, 23.77, 23.78

2 Coulomb s Law and Electric Field 23.13, 23.17, 23.23, 23.25, 23.26, 23.27, 23.62, 23.77, 23.78 College of Engineering and Technology Department of Basic and Applied Sciences PHYSICS I Sheet Suggested Problems 1 Vectors 2 Coulomb s Law and Electric Field 23.13, 23.17, 23.23, 23.25, 23.26, 23.27,

More information

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMF(16EE214) Sem: II-B.Tech & II-Sem Course & Branch: B.Tech - EEE Year

More information

Physics 1308 Exam 2 Summer Instructions

Physics 1308 Exam 2 Summer Instructions Name: Date: Instructions All Students at SMU are under the jurisdiction of the Honor Code, which you have already signed a pledge to uphold upon entering the University. For this particular exam, you may

More information

Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS

Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS Solution sets are available on the course web site. A data sheet is provided. Problems marked by "*" do not have solutions. 1. An

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation.

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges would yield

More information

FIRST TERM EXAMINATION (07 SEPT 2015) Paper - PHYSICS Class XII (SET B) Time: 3hrs. MM: 70

FIRST TERM EXAMINATION (07 SEPT 2015) Paper - PHYSICS Class XII (SET B) Time: 3hrs. MM: 70 FIRST TERM EXAMINATION (07 SEPT 205) Paper - PHYSICS Class XII (SET B) Time: 3hrs. MM: 70 Instructions:. All questions are compulsory. 2. Q.no. to 5 carry mark each. 3. Q.no. 6 to 0 carry 2 marks each.

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING : Electro Magnetic fields : A00 : II B. Tech I

More information

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII Chapter 1(Electric charges & Fields) DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT 2016-17 SUBJECT- PHYSICS (042) CLASS -XII 1. Why do the electric field lines never cross each other? [2014] 2. If the total

More information

Calculus Relationships in AP Physics C: Electricity and Magnetism

Calculus Relationships in AP Physics C: Electricity and Magnetism C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

More information

THE INDIAN COMMUNITY SCHOOL, KUWAIT

THE INDIAN COMMUNITY SCHOOL, KUWAIT THE INDIAN COMMUNITY SCHOOL, KUWAIT SERIES : I SE / 2016-2017 CODE : N 042 MAX. MARKS : 70 TIME ALLOWED : 3 HOURS NO. OF PAGES : 6 PHYSICS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

CHAPTER 5: ELECTROMAGNETIC INDUCTION

CHAPTER 5: ELECTROMAGNETIC INDUCTION CHAPTER 5: ELECTROMAGNETIC INDUCTION PSPM II 2005/2006 NO. 5 5. An AC generator consists a coil of 30 turns with cross sectional area 0.05 m 2 and resistance 100 Ω. The coil rotates in a magnetic field

More information

ECE 341 Test 2, Spring 2019 Your Name Tue 4/16/2019

ECE 341 Test 2, Spring 2019 Your Name Tue 4/16/2019 Problem 1. Electrostatics One surface of an infinitely large ideal conductor plate is at the plane x = 0 of the Cartesian coordinate system, with the x-y plane being the plane of the paper and the z axis

More information

Q1. Ans: (1.725) =5.0 = Q2.

Q1. Ans: (1.725) =5.0 = Q2. Coordinator: Dr. A. Naqvi Wednesday, January 11, 2017 Page: 1 Q1. Two strings, string 1 with a linear mass density of 1.75 g/m and string 2 with a linear mass density of 3.34 g/m are tied together, as

More information

Electrodynamics Exam 3 and Final Exam Sample Exam Problems Dr. Colton, Fall 2016

Electrodynamics Exam 3 and Final Exam Sample Exam Problems Dr. Colton, Fall 2016 Electrodynamics Exam 3 and Final Exam Sample Exam Problems Dr. Colton, Fall 016 Multiple choice conceptual questions 1. An infinitely long, straight wire carrying current passes through the center of a

More information

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions ECE 3209 Electromagnetic Fields Final Exam Example University of Virginia Solutions (print name above) This exam is closed book and closed notes. Please perform all work on the exam sheets in a neat and

More information

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII PHYSICS ASSIGNMENT ES/CE/MAG Class XII MM : 70 1. What is dielectric strength of a medium? Give its value for vacuum. 1 2. What is the physical importance of the line integral of an electrostatic field?

More information

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color. TRUE-FALSE STATEMENTS: ELECTRICITY: 1. Electric field lines originate on negative charges. 2. The flux of the electric field over a closed surface is proportional to the net charge enclosed by the surface.

More information

CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

More information

A) I B) II C) III D) IV E) V

A) I B) II C) III D) IV E) V 1. A square loop of wire moves with a constant speed v from a field-free region into a region of uniform B field, as shown. Which of the five graphs correctly shows the induced current i in the loop as

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

Good Luck! Mlanie LaRoche-Boisvert - Electromagnetism Electromagnetism and Optics - Winter PH. Electromagnetism and Optics - Winter PH

Good Luck! Mlanie LaRoche-Boisvert - Electromagnetism Electromagnetism and Optics - Winter PH. Electromagnetism and Optics - Winter PH 1 Notes: 1. To submit a problem, just click the Submit button under it. The Submit All button is not necessary. 2. A problem accepted as correct by CAPA will be highlighted in green. Once you see this,

More information

18 - ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS ( Answers at the end of all questions ) Page 1

18 - ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS ( Answers at the end of all questions ) Page 1 ( Answers at the end of all questions ) Page ) The self inductance of the motor of an electric fan is 0 H. In order to impart maximum power at 50 Hz, it should be connected to a capacitance of 8 µ F (

More information

Chapter 23 Term083 Term082

Chapter 23 Term083 Term082 Chapter 23 Term083 Q6. Consider two large oppositely charged parallel metal plates, placed close to each other. The plates are square with sides L and carry charges Q and Q. The magnitude of the electric

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

Phys222 W16 Exam 2: Chapters Key. Name:

Phys222 W16 Exam 2: Chapters Key. Name: Name: Please mark your answer here and in the scantron. A positively charged particle is moving in the +y-direction when it enters a region with a uniform electric field pointing in the +y-direction. Which

More information

SCS 139 Applied Physic II Semester 2/2011

SCS 139 Applied Physic II Semester 2/2011 SCS 139 Applied Physic II Semester 2/2011 Practice Questions for Magnetic Forces and Fields (I) 1. (a) What is the minimum magnetic field needed to exert a 5.4 10-15 N force on an electron moving at 2.1

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Final Exam Equation Sheet Force Law: F q = q( E ext + v q B ext ) Poynting Vector: S = ( E B) / µ 0 Force on Current Carrying

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

2. Waves with higher frequencies travel faster than waves with lower frequencies (True/False)

2. Waves with higher frequencies travel faster than waves with lower frequencies (True/False) PHY 2049C Final Exam. Summer 2015. Name: Remember, you know this stuff Answer each questions to the best of your ability. Show ALL of your work (even for multiple choice questions), you may receive partial

More information

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number:

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number: Signature: Name: I.D. number: You must do ALL the problems Each problem is worth 0 points for a total of 60 points. TO GET CREDIT IN PROBLEMS AND 3 YOU MUST SHOW GOOD WORK. CHECK DISCUSSION SECTION ATTENDED:

More information

Physics 2B Winter 2012 Final Exam Practice

Physics 2B Winter 2012 Final Exam Practice Physics 2B Winter 2012 Final Exam Practice 1) When the distance between two charges is increased, the force between the charges A) increases directly with the square of the distance. B) increases directly

More information

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2014 F 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2. Figure shows the field lines on a positive charge. Is the work done

More information

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT PHYSICS 202 203: CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT MM MARKS: 70] [TIME: 3 HOUR General Instructions: All the questions are compulsory Question no. to 8 consist of one marks questions, which

More information

INGENIERÍA EN NANOTECNOLOGÍA

INGENIERÍA EN NANOTECNOLOGÍA ETAPA DISCIPLINARIA TAREAS 385 TEORÍA ELECTROMAGNÉTICA Prof. E. Efren García G. Ensenada, B.C. México 206 Tarea. Two uniform line charges of ρ l = 4 nc/m each are parallel to the z axis at x = 0, y = ±4

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR-621113 ELECTRICAL AND ELECTRONICS DEPARTMENT 2 MARK QUESTIONS AND ANSWERS SUBJECT CODE: EE 6302 SUBJECT NAME: ELECTROMAGNETIC THEORY

More information

AP Physics C. Electricity - Term 3

AP Physics C. Electricity - Term 3 AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

More information

1. A ring of radius α has a charge distribution on it that varies as λ(θ) = λ 0 sin(θ), where λ 0 > 0, as shown in the figure.

1. A ring of radius α has a charge distribution on it that varies as λ(θ) = λ 0 sin(θ), where λ 0 > 0, as shown in the figure. EACH OF THE LECTURE QUESTIONS 1-22 IS WORTH 5 POINTS I. COULOMB S LAW 1. A ring of radius α has a charge distribution on it that varies as λ(θ) = λ 0 sin(θ), where λ 0 > 0, as shown in the figure. What

More information

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine Magnetostatic Fields Dr. Talal Skaik Islamic University of Gaza Palestine 01 Introduction In chapters 4 to 6, static electric fields characterized by E or D (D=εE) were discussed. This chapter considers

More information

Final Exam. PHY2049 Fall11

Final Exam. PHY2049 Fall11 Exam 1. Three charges form an equilateral triangle of side length d = 2 cm. The top charge is q3 = 3 μc, while the bottom two are q1 = q2 = - 6 μc. What is the magnitude of the net force acting on q3?

More information

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5.

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. 1. Which one of the following statements best explains why tiny bits of paper are attracted to a charged rubber rod? A) Paper

More information

Phys102 Final-163 Zero Version Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1. = m/s

Phys102 Final-163 Zero Version Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1. = m/s Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1 Q1. A 125 cm long string has a mass of 2.00 g and a tension of 7.00 N. Find the lowest resonant frequency of the string. A) 2.5 Hz B) 53.0 Hz C)

More information

PRACTICE EXAM 2 for Midterm 2

PRACTICE EXAM 2 for Midterm 2 PRACTICE EXAM 2 for Midterm 2 Multiple Choice Questions 1) In the circuit shown in the figure, all the lightbulbs are identical. Which of the following is the correct ranking of the brightness of the bulbs?

More information

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2 1. Two parallel-plate capacitors with different plate separation but the same capacitance are connected in series to a battery. Both capacitors are filled with air. The quantity that is NOT the same for

More information

PROBLEMS TO BE SOLVED IN CLASSROOM

PROBLEMS TO BE SOLVED IN CLASSROOM PROLEMS TO E SOLVED IN LSSROOM Unit 0. Prerrequisites 0.1. Obtain a unit vector perpendicular to vectors 2i + 3j 6k and i + j k 0.2 a) Find the integral of vector v = 2xyi + 3j 2z k along the straight

More information

Chapter 5: Electromagnetic Induction

Chapter 5: Electromagnetic Induction Chapter 5: Electromagnetic Induction 5.1 Magnetic Flux 5.1.1 Define and use magnetic flux Magnetic flux is defined as the scalar product between the magnetic flux density, B with the vector of the area,

More information

Physics 102 Spring 2006: Final Exam Multiple-Choice Questions

Physics 102 Spring 2006: Final Exam Multiple-Choice Questions Last Name: First Name: Physics 102 Spring 2006: Final Exam Multiple-Choice Questions For questions 1 and 2, refer to the graph below, depicting the potential on the x-axis as a function of x V x 60 40

More information

Physics 196 Final Test Point

Physics 196 Final Test Point Physics 196 Final Test - 120 Point Name You need to complete six 5-point problems and six 10-point problems. Cross off one 5-point problem and one 10-point problem. 1. Two small silver spheres, each with

More information

+.x2yaz V/m and B = y 2 ax + z2a 1. + x2az Wb/m 2. Find the force on the charge at P.

+.x2yaz V/m and B = y 2 ax + z2a 1. + x2az Wb/m 2. Find the force on the charge at P. 396 CHAPTER 8 MAGNETC FORCES, MATERALS, AND DEVCES Section 8.2-Forces Due to Magnetic Fields 8.1 A 4 mc charge has velocity u = l.4ax - 3.2ay - az mis at point P(2, 5, - 3) in the presence of E = 2xyzax

More information

Homework 6 solutions PHYS 212 Dr. Amir

Homework 6 solutions PHYS 212 Dr. Amir Homework 6 solutions PHYS 1 Dr. Amir Chapter 8 18. (II) A rectangular loop of wire is placed next to a straight wire, as shown in Fig. 8 7. There is a current of.5 A in both wires. Determine the magnitude

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization 4.2. The Field of a Polarized Object 4.3. The Electric Displacement 4.4. Linear Dielectrics 4.5. Energy in dielectric systems 4.6. Forces on

More information

Magnetostatics. Lecture 23: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Magnetostatics. Lecture 23: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetostatics Lecture 23: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetostatics Up until now, we have been discussing electrostatics, which deals with physics

More information

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

More information

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other.

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other. Exam II Solutions Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. 1.! Concerning electric and magnetic fields, which of the following is wrong?!! A

More information

Physics 240 Fall 2003: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2003: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 40 Fall 003: Final Exam Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will be

More information

Magnetic Force on a Moving Charge

Magnetic Force on a Moving Charge Magnetic Force on a Moving Charge Electric charges moving in a magnetic field experience a force due to the magnetic field. Given a charge Q moving with velocity u in a magnetic flux density B, the vector

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 013 Exam 3 Equation Sheet Force Law: F q = q( E ext + v q B ext ) Force on Current Carrying Wire: F = Id s " B # wire ext Magnetic

More information

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each.

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each. Physics (Theory) Time allowed: 3 hours] [Maximum marks:70 General Instructions: (i) All questions are compulsory. (ii) (iii) (iii) (iv) (v) There are 30 questions in total. Question Nos. 1 to 8 are very

More information

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the y-axis, 15 µm above the origin, while another charge q

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A jeweler needs to electroplate gold (atomic mass 196.97 u) onto a bracelet. He knows

More information

Lecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field

Lecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field Lecture 1101 Sound Waves Review Physics Help Q&A: tutor.leiacademy.org Force on a Charge Moving in a Magnetic Field A charge moving in a magnetic field can have a magnetic force exerted by the B-field.

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK III SEMESTER EE 8391 ELECTROMAGNETIC THEORY Regulation 2017 Academic

More information

AP Physics C Electricity & Magnetism Mid Term Review

AP Physics C Electricity & Magnetism Mid Term Review AP Physics C Electricity & Magnetism Mid Term Review 1984 37. When lighted, a 100-watt light bulb operating on a 110-volt household circuit has a resistance closest to (A) 10-2 Ω (B) 10-1 Ω (C) 1 Ω (D)

More information

1. Write the relation for the force acting on a charge carrier q moving with velocity through a magnetic field in vector notation. Using this relation, deduce the conditions under which this force will

More information

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N Exam Solutions 1. Three charges form an equilateral triangle of side length d = 2 cm. The top charge is q3 = 3 μc, while the bottom two are q1 = q2 = - 6 μc. What is the magnitude of the net force acting

More information

AP Physics C Electricity and Magnetism

AP Physics C Electricity and Magnetism AP Physics C Electricity and Magnetism Course overview This is a calculus based course in physics. The course is the equivalent of an introductory engineering course in Physics. The main objective of the

More information

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr SET: 1 General Instructions:- DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry

More information

The Steady Magnetic Fields

The Steady Magnetic Fields The Steady Magnetic Fields Prepared By Dr. Eng. Sherif Hekal Assistant Professor Electronics and Communications Engineering 1/8/017 1 Agenda Intended Learning Outcomes Why Study Magnetic Field Biot-Savart

More information

Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe. Useful Information. Your name sticker. with exam code

Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe. Useful Information. Your name sticker. with exam code Your name sticker with exam code Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe SIGNATURE: 1. The exam will last from 4:00 p.m. to 7:00 p.m. Use a #2 pencil to make entries on the

More information

Preliminary Examination - Day 1 Thursday, May 10, 2018

Preliminary Examination - Day 1 Thursday, May 10, 2018 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, May, 28 This test covers the topics of Classical Mechanics (Topic ) and Electrodynamics (Topic 2). Each topic has 4 A questions

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG(HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2015/2016

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG(HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 OCD60 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG(HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 ENGINEERING ELECTROMAGNETISM MODULE NO: EEE6002 Date: Tuesday

More information

Physics 2401 Summer 2, 2008 Exam III

Physics 2401 Summer 2, 2008 Exam III Physics 2401 Summer 2, 2008 Exam e = 1.60x10-19 C, m(electron) = 9.11x10-31 kg, ε 0 = 8.845x10-12 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x10-27 kg. n = nano = 10-9, µ = micro = 10-6, m =

More information

ST.JOSEPH COLLEGE OF ENGINEERING,DEPARTMENT OF ECE

ST.JOSEPH COLLEGE OF ENGINEERING,DEPARTMENT OF ECE EC6403 -ELECTROMAGNETIC FIELDS CLASS/SEM: II ECE/IV SEM UNIT I - STATIC ELECTRIC FIELD Part A - Two Marks 1. Define scalar field? A field is a system in which a particular physical function has a value

More information

CBSE Examination Paper

CBSE Examination Paper CBSE Examination Paper Time allowed : 3 hours Maximum marks: 70 General Instructions: Same as CBSE Examination Paper SET I 1. Using the concept of force between two infinitely long parallel current carrying

More information

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set University of the Philippines College of Science PHYSICS 72 Summer 2012-2013 Second Long Problem Set INSTRUCTIONS: Choose the best answer and shade the corresponding circle on your answer sheet. To change

More information

Do not fill out the information below until instructed to do so! Name: Signature: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: E-mail: Section Number: No calculators are allowed in the test. Be sure to put a box around your final answers and clearly

More information

2) A linear charge distribution extends along the x axis from 0 to A (where A > 0). In that region, the charge density λ is given by λ = cx where c

2) A linear charge distribution extends along the x axis from 0 to A (where A > 0). In that region, the charge density λ is given by λ = cx where c 2) A linear charge distribution extends along the x axis from 0 to A (where A > 0). In that region, the charge density λ is given by λ = cx where c is a constant. a) Find the electric potential valid for

More information

(a) zero. B 2 l 2. (c) (b)

(a) zero. B 2 l 2. (c) (b) 1. Two identical co-axial circular loops carry equal currents circulating in the same direction: (a) The current in each coil decrease as the coils approach each other. (b) The current in each coil increase

More information

Electromagnetic Induction Practice Problems Homework PSI AP Physics B

Electromagnetic Induction Practice Problems Homework PSI AP Physics B Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.

More information

PSI AP Physics C Sources of Magnetic Field. Multiple Choice Questions

PSI AP Physics C Sources of Magnetic Field. Multiple Choice Questions PSI AP Physics C Sources of Magnetic Field Multiple Choice Questions 1. Two protons move parallel to x- axis in opposite directions at the same speed v. What is the direction of the magnetic force on the

More information

PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks

PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks Note: the 1st homework is simply signing the honor pledge (but still it is compulsory); the actual homework starts with #2. And, please sign

More information

MUDRA PHYSICAL SCIENCES

MUDRA PHYSICAL SCIENCES MUDRA PHYSICAL SCIENCES VOLUME- PART B & C MODEL QUESTION BANK FOR THE TOPICS:. Electromagnetic Theory UNIT-I UNIT-II 7 4. Quantum Physics & Application UNIT-I 8 UNIT-II 97 (MCQs) Part B & C Vol- . Electromagnetic

More information

free space (vacuum) permittivity [ F/m]

free space (vacuum) permittivity [ F/m] Electrostatic Fields Electrostatic fields are static (time-invariant) electric fields produced by static (stationary) charge distributions. The mathematical definition of the electrostatic field is derived

More information